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An integral solution is described for flow of an electrically conducting fluid in a 
plane channel in a magnetic field which is aligned with the direction of the mean 
flow. I t  is shown that the presence of the magnetic field retards the development 
of the velocity profile by producing Lorentz forces which oppose the movement 
of fluid from the viscous wall region to the core. Solutions are presented for the 
entry length as a function of the magnetic interaction parameter. Solutions are 
also given for the dependence of the frictional component of the pressure drop on 
the magnetic field strength. The transverse pressure gradient produced by Lorentz 
forces is discussed for a typical case. 

1. Introduction 
Because of its numerous applications to MHD power generation and pumping, 

the problem of flow of a conducting fluid in a magnetic field transverse to the 
mean velocity has received much attention in the literature since Hartmann 
int,roduced t,he fully developed solution in 1937 (see Brandt & Gillis 1965; Shohet 
1963; Maciulaitis & Loeffler 1964; Goins 1965). Flows in which the magnetic 
field is oriented along the mean velocity axis have received relatively little atten- 
tion. In the fully developed laminar flow, no Lorentz force is generated, since all 
velocities are parallel to the field; in the entry region of a channel, however, 
velocity components transverse to the mean flow do exist, and hence a magnetic 
body force is exerted on the fluid which tends to retard the growth of the viscous 
wall layers and hence lengthen the entry region. 

Several investigators have examined the question of stability of MHD flows in 
axially directed fields. Stuart (1954) considered analytically the stability of plane 
Poiseuille flow in a longitudinal magnetic field. By determining the Reynolds 
number for neutral stability of the least stable mode of disturbance, he predicted 
the variation in transition Reynolds number and showed that it should increase 
with increasing Hartmann number. 

Bader & Carlson (1958) conducted experiments with mercury in a glass tube 
at  Reynolds numbers up to 8000 and Hartmann numbers up to about 50. They 
measured the overall pressure drop in the tube and concluded that the magnetic 
field had little effect on transition. This conclusion was questioned, however, 
because the pressure taps were positioned such that it was impossible to dis- 
tinguish hydrodynamic and magnetic entry effects from the developed flow 
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region, and these entry effects may have masked any increment in the pressure 
drop caused by transition. 

Globe (1961) also performed experiments in mercury, at Hartmann numbers 
up to 20 and Reynolds numbers up to 20000. He also inferred the onset of transi- 
tion from pressure-drop measurements, but placed the pressure taps well down- 
stream of the entrance to the solenoid and thus was able to avoid the interpreta- 
tion problem faced by Bader & Carlson. His data clearly showed the effects of the 
longitudinal field on transition, and in fact were well correlated by Stuart’s 
theory even though Globe’s tests were run in a tube rather than a plane channel. 

Fraim & Heiser (1968) measured the pressure drop for mercury flow in tubes 
and in addition used a single hot wire spanning the tube diameter to makea gross 
measurement of the intermittency of the flow. This technique was valuable as a 
sensitive qualitative indicator of the onset of transition. The experiments covered 
Reynolds numbers up to 11 000 and Hartmann numbers up to about 75. Fraim & 
Heiser’s conclusions differed markedly from those of Globe. Their results fell far 
below Stuart’s theoretical predictions for plane channels, indicating either that 
the difference in geometry was significant or that the longitudinal field had much 
less of a stabilizing influence on the flow than had previously been supposed. 

Branover (1 967) performed similar stability experiments, extending the range 
of Reynolds and Hartmann numbers to 50 000 and 360, respectively. He further 
confirmed the stabilizing influence of the magnetic field on transition. 

In all the above investigations, the emphasis was on stability of the flow rather 
than entry-region development. Fraim & Heiser did suggest that MHD entry- 
region effects might have influenced their friction-factor data, but at  the low 
magnetic interaction parameters studied, this effect would have been masked by 
other uncertainties in the experiment; as will be shown later in this paper, entry- 
region effects become significant only a t  much higher interaction parameters than 
those previously studied experimentally. 

The motivation to analyse the entry-length problem in more detail arises from 
its possible application in the design of fusion reactors. In  these reactors, liquid- 
metal coolants flow along magnetic field lines after entering the breeding blanket. 
Both the pressure drop and the heat-transfer characteristics of the flow will be 
affected by the lengthening of the entry region, and hence it is necessary to 
analyse magnetic field effects in order to estimate these design parameters. I n  
this application, the fluid (say lithium) will have to cross magnetic field lines to 
enter the blanket, but will ultimately flow parallel to the field. Hartmann num- 
bers of lo4 will be typical. Hartmann (1937) showed that for transverse fields the 
velocity profile gets progressively ‘flatter ’ with increasing Hartmann number. 
For example, when M = 10 the maximum velocity is only about 10 % higher than 
the mean. It is reasonable, therefore, to make the idealization that the starting 
velocity profile for the axial-field portion of the flow in a fusion reactor will, for 
all practical purposes be uniform. It is further assumed that the flow will be 
incompressible and laminar; a t  the Reynolds numbers of interest, the magnetic 
field may be expected to suppress turbulence. The walls of the channel are 
assumed to be non-conducting. 

A n  integral approach was selected for an attack on this problem. While some 
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FIGURE 1. Channel configuration. 

of the structure of the flow is lost in the integration process, the method does 
yield sufficiently detailed results to enable one to assess the desirability of a more 
complete solution, and to provide useful input to a design analysis. 

2. Analysis 
Formulation 

Figure 1 illustrates the channel configuration and the co-ordinate system used. 
The velocity at the entrance is assumed to be uniform and of magnitude V,. 
Viscous effects bring the fluid to rest at the wall, causing the formation of a region 
where the longitudinalvelocity varies from zero a t  the wall to some nearly uniform 
value in the core of the channel. The depth 6 of the boundary layer grows with dis- 
tance along the channel until the two boundary layers eventually meet, marking 
the end of the entry region and the onset of fully developed flow. Since the 
longitudinal mass flux is less in the boundary layer than in the core region, 
continuity requires the generation of a transverse fluid velocity away from the 
walls. The transverse flux is responsible for two effects. First, the flux produces an 
increase in the ‘uniform ’ longitudinal core velocity; second, the transverse 
component is normal to the applied magnetic field B, and the ensuing interaction 
results in a Lorentz force which generally opposes the growth of the boundary 
layer. Hence, unlike a normal boundary-layer problem, the y momentum equa- 
tion must be retained in the formulation. 

The x and y momentum equations and the continuity equation may be written 
as 

(1) 

where u and v are the longitudinal and transverse velocities respectively, x and 
y are the co-ordinates shown in figure 1, P is the pressure, and X and Y are body 
forces per unit volume in the x and y directions respectively. 

a-2 
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The pressure may be eliminated from the first two equations by cross-differen- 
tiating them and subtracting (equivalent to taking the curl of the vector equation 
of motion). Rearrangement of terms yields the two-dimensional vorticity equa- 
tion: 

where w = av/ax - au/ay is the z component of the vorticity. 
The Lorentz-force equation defines the electromotive body force: 

F = X % +  YQ = p , E + J x B ,  ( 5 )  

where pe is the local charge density. The current is related to the electric and 
magnetic fields through Ohm's law 

J = a ( E + V x B ) .  ( 6 )  

In  this study, the electric field is everywhere assumed to be zero. Assuming that 
the induced magnetic fields are negligible, the body force becomes 

X = 0, Y = - ~ B : V .  ( 7) 

Equations (4) and (7) may be combined and made dimensionless with the 
following parameters : 

u' = u/C, v' = v/& x' = x/a, y' = y/a, 

where 
half-width. Equation (4) then becomes 

is the entrance velocity or mean fluid velocity and a is the channel 

where w' = av'laz' - au'lay', R = ax/. is the Reynolds number, and N = aBt a/ 
pV, is the magnetic interaction parameter. 

Carrying out an order-of-magnitude analysis and neglecting second-order 

Application of the continuity equation at  each cross-section yields a second 
governing equation: lo1 u'dy' = 1. (10) 

Equation (9) may be integrated across the boundary layer as follows: 

where 9 is the non-dimensional boundary-layer thickness &/a. Assuming that 
u' = uo and au'lay' = a2u'li3y'2 = 0 at y' = q5 and that u' = v' = 0 a t  y' = 0, this 
integral equation becomes 

where uo is the dimensionless uniform core velocity. 
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Equations (10) and (1 1) may be converted into ordinary differential equations 
using an assumed velocity profile. The parabolic profile represented by the 
equation 

was selected, since it gives the exact solution at  both ends of the entry region, 
since the velocity vanishes a t  the wall and since the profile connects smoothly 
with the uniform core velocity at  the edge of the boundary layer. 

The continuity equation may be used to determine the corresponding trans- 

when when y’ y’ > q5, 
or v’ = ( A‘(Y’/$I2 +B’(Y’/q5)s 

C’(1 - y‘) 

where 

Using the assumed profiles, (10) becomes 

IO1 u’dy’ = /o’u’dyr +J+’ u’dy‘ = 1, 

or ~ . / ~ ’ [ 2 ( $ )  - ( $ ) 2 ] d y ‘ + u o / ~ 1 d y ‘ =  1, 

which simplifies to 
L 

uo(l-Q$5) = 1. 

Note that (14) may alternatively be derived from the requirement that v vanishes 
at the centre-line (as it must because of symmetry). This means that application 
of the continuity equation to any flow cross-section also guarantees the satisfac- 
tion of the boundary condition v = 0 a t  y’ = 1.  

The various terms of (1  1)  may now be evaluated. Substitution yields 

and a 2 q a p  = - 2u0/q52. 
Equation (11) then becomes 

Equations (14) and (15) may be combined to give an ordinary differential 
equation in one unknown. Equation (14) may be rearranged as 

uo = 3/(3-q5) 
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and differentiated to obtain relations between the derivatives : 
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Equations (14)-( 17) may be combined as follows: 

36 d$ 24(3-$) d2$ (12$2-244+18) d$ 
3 - 4 d ~ '  R@' 3 - 4  

Introducing the dimensionless co-ordinate r] = x/aR = x'/R gives 

d24 (1242- 244 + 18) 

3 - 4  

This means that all flows with the same N/R may be represented by a single 
solution of (1 9). Rearrangement of (19) produces the equation to be solved 
numerically : 

Neither (1  9) nor (20) appears to be soluble by direct analytical techniques, and 
even numerical techniques present problems in the region very near the origin. 
Equation (20) clearly shows a singularity in d2q5/dq2 a t  q = 0. This difficultymay 
be circumvented by using a power-series approximation in the neighbourhood of 
the origin. Using this technique, initial conditions are obtained a t  some point in 
the neighbourhood of the origin and the solution is then continued using (20), 
which is well behaved away from the origin. 

The following truncated series was used for this approximation: 

$ = A+&P. 
At q = 0, 4 = 0; therefore 

4 = Bqn. 

If n < 1, all derivatives of qi will have the expected singularities at the origin. 
Substitution of this series into (19) yields B = (24R/N)* and n = +, 

or I$ = (24R/N)i$. (21) 

Before describing the numerical approach, it should be observed that (1 9)  may 
be solved analytically when N = 0. Equation (19) then becomes 

d$/dq = 2(3 - #)2/3#2, 

which may be written in terms of uo using (14) : 

duo/dq = 2u;/9(uo - 1)'. 

Rearranging and integrating this equation and setting 4 = 1 (or uo = #) yields a 
value for the length of the entry region with no magnetic field: 

xeo/a = R19.9. 
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The approximate core velocities obtained in this analysis for N = 0 compared 
well with two finite-difference solutions (Bodoia & Osterle 1961; Brandt & Gillis 
1965) and a perturbation solution obtained by Schlichting (1934). The solutions 
are not coincident, but are in reasonable agreement considering their approxi- 
mate nature. Bodoia & Osterle's solution predicts an infinite entry region with 
the centre-line velocity asymptotically approaching the steady-state value. The 
integral solution predicts a finite entry region. Bodoia & Osterle's solution 
shows that 96% of the fully developed velocity has been reached at a point 
corresponding to the end of the approximate entry length determined in the 
present study. Comparable agreement was obtained for computed pressure distri- 
butions for the above solutions. 

Solution for N =I= 0 

For the case where N is not equal to zero, (20) was solved numerically as follows. 
Initial values of #J and #J' were determined for the first increment using the power- 
series approximation. A Runge-Kutta integration was used to obtain the next 
three points, and remaining values were computed using an Adams-Bashforth 
predictor and an Adams-Moulton corrector scheme. 

Determination of the pressure drop is somewhat more involved than in the 
non-magnetic case. The magnetic body force causes the pressure to vary across 
the channel; therefore a mean pressure is defined as 

P = - pay. 
a 0  ' I a  

Application of the momentum theorem from the channel wall to the centre-line, 
and from the entrance to an axial point x, gives 

where r is the local wall shear stress and Po is the entrance pressure. Rearrange- 

The integrals may be simplified using the assumed velocity distribution: 

By substitution, the pressure-drop equation then becomes 

-2u; 1-- +4 - a y - 2 ,  ( ::) joq7 AP 
q 
- -  

where q = +p is the dynamic pressure. 
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FIGURE 2. 
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Effect of magnetic field upon the developing core velocity of channel entry flows. 

The power-series approximation for 9 was used to evaluate the integral term 
in the neighbourhood of the origin. That is, 

where ql is the end of the first increment. Then 

dq = 2$B-'d9 

and 

where 
line velocity respectively a t  ql. Finally, the pressure-drop equation becomes 

and uol are the non-dimensional boundary-layer thickness and centre- 

The trapezoidal rule was used to evaluate the integral in this expression. 

3. Results of the analysis for N + 0 
Entry length and core velocity 

Figure 2 illustrates the effect of the magnetic field on the development of the core 
velocity in the entry region. This figure shows the dimensionless centre-line 
velocity plotted against dimensionless distance along the channel for a range of 
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FIGURE 4. Normalized boundary-layer profiles for channel entry flows. 
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FIGURE 6. Local friction factor for channel entry flows. 

NIR. Recall that N is proportional to the square of the magnetic field strength. 
The end of the channel entry region is identified by the point where the dimen- 
sionless velocity is 1.5. The MHD entry regions develop more slowly than those 
for non-magnetic flows as expected. 

Figure 3 shows the ra.tio of the total MHD entry length x, t o  the hydrodynamic 
(non-magnetic) entry length xeo, plotted against the ratio NIR. When NIR = 

1000, the entry length is increased to nearly fifty times the non-magnetic value. 
By way of example, imagine a 100 kG field acting on lithium flowing into a 
channel 3 in. wide. If bhe Reynolds number is 10000, the ratio N / R  will be 18.9. 
Then, according to figure 3, the channel entry length would be 900 ft,  compared 
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FIGURE 7. Mean friction factor for channel entry flows. 

with about 125 ft in the non-magnetic case (assuming a laminar non-magnetic 
flow). In  the absence of the magnetic field, the flow a t  thisReynolds number would 
of course be turbulent and the non-magnetic entry length would be consider- 
ably shorter than 125 ft. 
Figure 4 shows the normalized boundary-layer thickness as a function of axial 
location. For large values of N[R, the growth rate appears to approach a limiting 
value. 

Pressure drop 
Figure 5 illustrates the effect of increasing magnetic field on the total pressure 
drop, including the momentum change, through the entry region. The mean 
pressure drop, where mean pressure is defined as 

has been made dimensionless with the dynamic pressure q = 3pV:. The entry- 
length pressure drop for N / R  = 1000 is nearly fifty times the non-magnetic 
pressure drop. 

Tnformation on the total pressure drop through the entry region is of limited 
value from the practical standpoint, since the entry regions are so long that in 
many practical situations fully developed flow will never be attained. Figure 6 
gives the local friction factor, which is defined in terms of the local shear stress at  
the wall 

These curves may be integrated to obtain the wall drag due to friction in the entry 
region. This loss, combined with momentum changes associated with changes in 

7- =fz(*PV3.  
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FIUURE 8. Typical transverse pressure distribution for channel entry flows. 
xlaR = 0.075, NIR = 1. 

the velocity distribution, gives the pressure drop up to a particular location. The 
local friction factor clearly increases with magnetic field strength. 

Figure 7 gives mean friction factors which may be used to compute the mean 
frictional pressure drop up to  any point within the entry region (i.e. not including 
momentum changes). This drop may be computed as 

As stated earlier, the pressure varies in the t,ransverse (y) direction owing to 
the magnetic body force, which is related to the transverse velocity by 

aP/ay = - Nvpx/a. 

Figure 8 illustrates the significance of the cross-channel pressure variation 
including the momentum change, for a typical case. This figure shows the pressure 
defect for NIR = 1 and $ = 0.6. Half the change in the core velocity has occurred 
a t  this point and the mean pressure drop is 1.35q. At the wall the pressure drop is 
1-  17p, i.e. the wall pressure is 0.1 8q greater than the mean pressure; the centre-line 
pressure drop is 1*55q, i.e. the centre-line pressure is 0.20q less than the mean. 
Hence wall pressure measurements made during an experiment would tend to be 
higher than mean pressures in the entry region. 
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4. Conclusions 
It has been shown that, while the presence of an axial magnetic field will not 

affect the fully developed laminar flow behaviour of a conducting fluid, body 
forces induced by transverse velocities may have a significant effect in the entry 
region. For high magnetic fields, the entry length may be extended by more than 
an order of magnitude, and the pressure drop for this region will consequently 
be increased substantially. The cross-channel magnetic body force is associated 
with a pressure gradient normal to the flow axis in the entry region. The analysis 
presented in this paper is of an approximate nature, and hence it is recommended 
that the numerical results, particularly with regard to the cross-channel pressure 
gradient, be used with care. The integral method, however, has become well 
accepted for entry-length and pressure-drop estimates, and the authors feel that 
these figures should be adequate for preliminary design purposes. 
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